ACPI (advanced configuration and power interface) was designed to enable the operating system to set up and control the individual hardware components. ACPI supersedes both PnP and APM. It delivers information about the battery, AC adapter, temperature, fan, and system events, like “close lid” or “battery low.”
The BIOS provides tables containing information about the individual
components and hardware access methods. The operating system uses
this information for tasks like assigning interrupts or activating
and deactivating components. Because the operating system executes
commands stored in the BIOS, the functionality depends on the BIOS
implementation. The tables ACPI can detect and load are
reported in /var/log/boot.msg
. See
Section 16.3.4, “Troubleshooting” for more information
about troubleshooting ACPI problems.
If the kernel detects an ACPI BIOS when the system is booted,
ACPI is activated automatically and APM is deactivated. The
boot parameter acpi=on
may be necessary for some
older machines. The computer must support ACPI 2.0 or later.
Check the kernel boot messages in /var/log/boot.msg
to see if ACPI was activated.
Subsequently, a number of modules must be loaded. This is done by the start
script of the ACPI daemon. If any of these modules cause problems, the
respective module can be excluded from loading or unloading in
/etc/sysconfig/powersave/common
.
The system log (/var/log/messages
)
contains the messages of the modules, enabling you to see which components
were detected.
/proc/acpi
now contains a number of files that provide
information about the system state or can be used to change some of the
states. Some features do not work yet because they are still under
development and the support of some functions largely depends on the
implementation of the manufacturer.
All files (except dsdt
and fadt
)
can be read with cat. In some files, settings can be
modified with echo, for example, echo X
> file
to specify
suitable values for X. Always use the command powersave
to access this information and control options. The following describes the
most important files:
/proc/acpi/info
General information about ACPI.
/proc/acpi/alarm
Here, specify when the system should wake from a sleep state. Currently, this feature is not fully supported.
/proc/acpi/sleep
Provides information about possible sleep states.
/proc/acpi/event
All events are reported here and processed by the Powersave daemon
(powersaved). If no daemon accesses this file,
events, such as a brief click on the power button or
closing the lid, can be read with cat
/proc/acpi/event
(terminate with
Ctrl-C).
/proc/acpi/dsdt
and
/proc/acpi/fadt
These files contain the ACPI tables DSDT (differentiated
system description table) and FADT (fixed ACPI
description table). They can be read with
acpidmp, acpidisasm, and
dmdecode. These programs and their documentation are
located in the package pmtools
. For example,
acpidmp DSDT | acpidisasm
.
/proc/acpi/ac_adapter/AC/state
Shows whether the AC adapter is connected.
/proc/acpi/battery/BAT*/{alarm,info,state}
Detailed information about the battery state. The charge level is read
by comparing the last full capacity
from
info
with the remaining capacity
from state
. A more comfortable way to do this is to
use one of the special programs introduced in
Section 16.3.3, “ACPI Tools”. The charge level at
which a battery event is triggered can be specified in
alarm
.
/proc/acpi/button
This directory contains information about various switches.
/proc/acpi/fan/FAN/state
Shows if the fan is currently active. Activate or deactivate the
fan manually by writing
0
(on) or 3
(off) into
this file. However, both the
ACPI code in the kernel and the hardware (or the BIOS)
overwrite this setting when it gets too warm.
/proc/acpi/processor/CPU*/info
Information about the energy saving options of the processor.
/proc/acpi/processor/CPU*/power
Information about the current processor state. An asterisk next to
C2
indicates that the processor is idle. This is the
most frequent state, as can be seen from the usage
value.
/proc/acpi/processor/CPU*/throttling
Can be used to set the throttling of the processor clock. Usually, throttling is possible in eight levels. This is independent of the frequency control of the CPU.
/proc/acpi/processor/CPU*/limit
If the performance (outdated) and the throttling are automatically controlled by a daemon, the maximum limits can be specified here. Some of the limits are determined by the system. Some can be adjusted by the user.
/proc/acpi/thermal_zone/
A separate subdirectory exists for every thermal zone. A thermal zone is an area with similar thermal properties whose number and names are designated by the hardware manufacturer. However, many of the possibilities offered by ACPI are rarely implemented. Instead, the temperature control is handled conventionally by the BIOS. The operating system is not given much opportunity to intervene, because the life span of the hardware is at stake. Therefore, some of the following descriptions only have a theoretical value.
/proc/acpi/thermal_zone/*/temperature
Current temperature of the thermal zone.
/proc/acpi/thermal_zone/*/state
The state indicates if everything is ok
or if ACPI
applies active
or passive
cooling.
In the case of ACPI-independent fan control, this state is always
ok
.
/proc/acpi/thermal_zone/*/cooling_mode
Select the cooling method controlled by ACPI. Choose from passive (less performance, economical) or active cooling mode (full performance, fan noise).
/proc/acpi/thermal_zone/*/trip_points
Enables the determination of temperature limits for triggering specific
actions, like passive or active cooling, suspension
(hot
), or a shutdown (critical
).
The possible actions are defined in the DSDT (device-dependent). The
trip points determined in the ACPI specification are
critical
, hot
,
passive
, active1
, and
active2
. Even if not all of them are implemented,
they must always be entered in this file in this order. For example, the
entry echo 90:0:70:0:0 >
trip_points
sets the temperature for
critical
to 90
and the temperature
for passive
to 70
(all
temperatures measured in degrees Celsius).
/proc/acpi/thermal_zone/*/polling_frequency
If the value in temperature
is not updated
automatically when the temperature changes, toggle the polling mode
here. The command echo X >
/proc/acpi/thermal_zone/*/polling_frequency
causes
the temperature to be queried every X
seconds. Set
X=0
to disable polling.
None of these settings, information, and events need to be edited manually. This can be done with the Powersave daemon (powersaved) and various applications, like powersave, kpowersave, and wmpowersave. See Section 16.3.3, “ACPI Tools”. Because powersaved covers the functionalities of the older acpid, acpid is no longer needed.
The CPU can save energy in three ways. Depending on the operating mode of the computer, these methods can be combined. Saving energy also means that the system heats up less and the fans are activated less frequently.
PowerNow! and
Speedstep are
the designations AMD and Intel use for this
technology. However, this technology is also
applied in processors of other manufacturers.
The clock frequency of the CPU and its core
voltage are reduced at the same time, resulting
in more than linear energy savings. This means
that when the frequency is halved (half performance),
far less than half of the energy is consumed.
This technology is independent from APM or
ACPI and requires a daemon that adapts the
frequency and the current need for performance.
The settings can be made in the directory
/sys/devices/system/cpu/cpu*/cpufreq/
.
This technology omits a certain percentage of the clock
signal impulses for the CPU. At 25% throttling, every
fourth impulse is omitted. At 87.5%, only every eighth impulse
reaches the processor. However, the energy savings are a little
less than linear. Normally, throttling is only used if frequency scaling
is not available or to maximize power savings. This technology,
too, must be controlled by a special process. The system
interface is
/proc/acpi/processor/*/throttling
.
The operating system puts the processor to
sleep whenever there is nothing to do. In this case,
the operating system sends the CPU a halt
command. There are three states: C1, C2, and C3. In the
most economic state C3, even the synchronization of the
processor cache with the main memory is halted. Therefore,
this state can only be applied if no other device modifies
the contents of the main memory via bus master activity. Some
drivers prevent the use of C3. The current state is displayed
in /proc/acpi/processor/*/power
.
Frequency scaling and throttling are only relevant if the processor is busy, because the most economic C state is applied anyway when the processor is idle. If the CPU is busy, frequency scaling is the recommended power saving method. Often the processor only works with a partial load. In this case, it can be run with a lower frequency. Usually, dynamic frequency scaling controlled by a daemon, such as powersaved, is the best approach. A static setting to a low frequency is useful for battery operation or if you want the computer to be cool or quiet.
Throttling should be used as the last resort, for example, to extend the battery operation time despite a high system load. However, some systems do not run smoothly when they are throttled too much. Moreover, CPU throttling does not make sense if the CPU has little to do.
In SUSE LINUX these technologies are controlled by the powersave daemon. The configuration is explained in Section 16.5, “The powersave Package”.
The range of more or less comprehensive ACPI utilities includes tools that
merely display information, like the battery charge level and the
temperature (acpi, klaptopdaemon, wmacpimon, etc.), tools that facilitate
the access to the structures in /proc/acpi
or that
assist in monitoring changes (akpi, acpiw, gtkacpiw), and tools for editing
the ACPI tables in the BIOS (package pmtools
).
There are two different types of problems. On one hand, the ACPI code of the kernel may contain bugs that were not detected in time. In this case, a solution will be made available for download. More often, however, the problems are caused by the BIOS. Sometimes, deviations from the ACPI specification are purposely integrated in the BIOS to circumvent errors in the ACPI implementation in other widespread operating systems. Hardware components that have serious errors in the ACPI implementation are recorded in a blacklist that prevents the Linux kernel from using ACPI for these components.
The first thing to do when problems are encountered is to update the BIOS. If the computer does not boot at all, one of the following boot parameters may be helpful:
Do not use ACPI for configuring the PCI devices.
Only perform a simple resource configuration. Do not use ACPI for other purposes.
Disable ACPI.
![]() | Problems Booting without ACPI |
---|---|
Some newer machines (especially SMP systems and AMD64 systems) need ACPI for configuring the hardware correctly. On these machines, disabling ACPI can cause problems. |
Monitor the boot messages of the system with the
command dmesg | grep -2i acpi
(or
all messages, because the problem may not be caused by ACPI) after
booting. If an error occurs while parsing an ACPI table, the most
important table—the DSDT—can be replaced with an
improved version. In this case, the faulty DSDT of the BIOS is
ignored. The procedure is described in Section 16.5.4, “Troubleshooting”.
In the kernel configuration, there is a switch for activating ACPI debug messages. If a kernel with ACPI debugging is compiled and installed, experts searching for an error can be supported with detailed information.
If you experience BIOS or hardware problems, it is always advisable to contact the manufacturers. Especially if they do not always provide assistance for Linux, they should be confronted with the problems. Manufacturers will only take the issue seriously if they realize that an adequate number of their customers use Linux.
Additional documentation and help on ACPI:
http://www.cpqlinux.com/acpi-howto.html (detailed ACPI HOWTO, contains DSDT patches)
http://www.intel.com/technology/iapc/acpi/faq.htm (ACPI FAQ @Intel)
http://acpi.sourceforge.net/ (the ACPI4Linux project at Sourceforge)
http://www.poupinou.org/acpi/ (DSDT patches by Bruno Ducrot)