/* * cryptographic random number generator for PuTTY's ssh client */ #include "ssh.h" void noise_get_heavy(void (*func) (void *, int)); void noise_get_light(void (*func) (void *, int)); /* * `pool' itself is a pool of random data which we actually use: we * return bytes from `pool', at position `poolpos', until `poolpos' * reaches the end of the pool. At this point we generate more * random data, by adding noise, stirring well, and resetting * `poolpos' to point to just past the beginning of the pool (not * _the_ beginning, since otherwise we'd give away the whole * contents of our pool, and attackers would just have to guess the * next lot of noise). * * `incomingb' buffers acquired noise data, until it gets full, at * which point the acquired noise is SHA'ed into `incoming' and * `incomingb' is cleared. The noise in `incoming' is used as part * of the noise for each stirring of the pool, in addition to local * time, process listings, and other such stuff. */ #define HASHINPUT 64 /* 64 bytes SHA input */ #define HASHSIZE 20 /* 160 bits SHA output */ #define POOLSIZE 1200 /* size of random pool */ struct RandPool { unsigned char pool[POOLSIZE]; int poolpos; unsigned char incoming[HASHSIZE]; unsigned char incomingb[HASHINPUT]; int incomingpos; }; static struct RandPool pool; void random_add_noise(void *noise, int length) { unsigned char *p = noise; while (length >= (HASHINPUT - pool.incomingpos)) { memcpy(pool.incomingb + pool.incomingpos, p, HASHINPUT - pool.incomingpos); p += HASHINPUT - pool.incomingpos; length -= HASHINPUT - pool.incomingpos; SHATransform((word32 *)pool.incoming, (word32 *)pool.incomingb); pool.incomingpos = 0; } memcpy(pool.incomingb, p, length); pool.incomingpos = length; } void random_stir(void) { word32 block[HASHINPUT/sizeof(word32)]; word32 digest[HASHSIZE/sizeof(word32)]; int i, j, k; noise_get_light(random_add_noise); SHATransform((word32 *)pool.incoming, (word32 *)pool.incomingb); pool.incomingpos = 0; /* * Chunks of this code are blatantly endianness-dependent, but * as it's all random bits anyway, WHO CARES? */ memcpy(digest, pool.incoming, sizeof(digest)); /* * Make two passes over the pool. */ for (i = 0; i < 2; i++) { /* * We operate SHA in CFB mode, repeatedly adding the same * block of data to the digest. But we're also fiddling * with the digest-so-far, so this shouldn't be Bad or * anything. */ memcpy(block, pool.pool, sizeof(block)); /* * Each pass processes the pool backwards in blocks of * HASHSIZE, just so that in general we get the output of * SHA before the corresponding input, in the hope that * things will be that much less predictable that way * round, when we subsequently return bytes ... */ for (j = POOLSIZE; (j -= HASHSIZE) >= 0 ;) { /* * XOR the bit of the pool we're processing into the * digest. */ for (k = 0; k < sizeof(digest)/sizeof(*digest); k++) digest[k] ^= ((word32 *)(pool.pool+j))[k]; /* * Munge our unrevealed first block of the pool into * it. */ SHATransform(digest, block); /* * Stick the result back into the pool. */ for (k = 0; k < sizeof(digest)/sizeof(*digest); k++) ((word32 *)(pool.pool+j))[k] = digest[k]; } } /* * Might as well save this value back into `incoming', just so * there'll be some extra bizarreness there. */ SHATransform(digest, block); memcpy(digest, pool.incoming, sizeof(digest)); pool.poolpos = sizeof(pool.incoming); } static void random_add_heavynoise(void *noise, int length) { unsigned char *p = noise; while (length >= (POOLSIZE - pool.poolpos)) { memcpy(pool.pool + pool.poolpos, p, POOLSIZE - pool.poolpos); p += POOLSIZE - pool.poolpos; length -= POOLSIZE - pool.poolpos; random_stir(); pool.poolpos = 0; } memcpy(pool.pool, p, length); pool.poolpos = length; } void random_init(void) { memset(&pool, 0, sizeof(pool)); /* just to start with */ /* * For noise_get_heavy, we temporarily use `poolpos' as the * pointer for addition of noise, rather than extraction of * random numbers. */ pool.poolpos = 0; noise_get_heavy(random_add_heavynoise); random_stir(); } int random_byte(void) { if (pool.poolpos >= POOLSIZE) random_stir(); return pool.pool[pool.poolpos++]; } void random_get_savedata(void **data, int *len) { random_stir(); *data = pool.pool+pool.poolpos; *len = POOLSIZE/2; }