
Further Use of Unix

Further Use of Unix

Table of Contents

1. Some useful commands. 1
Using the locate command. 2
Using the find command. 3
Using the ps command. 5

2. Some shell features. 8
Tab completion . 9
A simple history mechanism. 12
An older history mechanism. 13
Command line editing. 14

3. The Filesystem. 15
The file system bestiary. 16
Permissions . 24
Building and adding to the file system. 27

4. The Secure Shell program. 33
Basic use . 34
Transferring files with scp. 37
Using sftp . 38
Doing without the password. 40

List of Figures

1.1. Example: Using the locate command. 2
1.2. Simple uses of find—1. 3
1.3. Simple uses of find—2. 3
1.4. Applying a command to every plain file. 3
1.5. ps: Fine tuning the output. 5
1.6. Exercise: ps format options. 6
2.1. Demonstrating bash. 9
2.2. Tab completion—1. 9
2.3. Tab completion—2. 9
2.4. Tab completion—3. 10
2.5. Tab completion—4. 10
2.6. Simple history mechanism. 12
2.7. Use of the history command. 13
2.8. Use of !N . 13
2.9. Use of !$. 13
2.10. Command line editing. 14
3.1. Types of node in the Unix file system. 16
3.2. Directories, files and inode numbers. 16
3.3. Looking at inode numbers. 16
3.4. Linking to a file . 17
3.5. Ambiguous parent directory. 18
3.6. Two links to the same file. 18
3.7. Creating a symbolic link. 18
3.8. Symbolic links are not peers with their targets. 19
3.9. Creating a named pipe. 19
3.10. Using a named pipe. 20
3.11. Ownership of the floppy disc device. 21
3.12. Archiving a set of files. 21
3.13. Unpacking a tar archive. 22
3.14. Writing a disc image onto a floppy. 22
3.15. Some M-tools . 23
3.16. Looking at file permissions. 24
3.17. Looking at directory permissions. 25
3.18. Demonstrating umask. 25
3.19. Virtual file system before anything is added. 27
3.20. Part of the root physical file system. 27
3.21. Virtual file system with the root file system mounted. 27
3.22. /etc/fstab. 28
3.23. Part of the /boot physical file system. 28
3.24. Virtual file system with the /boot file system mounted. 28
3.25. Before mounting a DOS floppy. 29
3.26. Mounting a DOS floppy. 30
3.27. Investigating /proc. 31

Chapter 1. Some useful commands

Chapter 1. Some useful commands

Table of Contents

Using the locate command. 2
Using the find command. 3
Using the ps command. 5

This section introduces a number of commands above the introductory set you already know and goes
into greater depth with some commands you should have already met.

1

Chapter 1. Some useful commands

Using the locate command
The locate program is used to find files of a certain name on the system. Suppose that on the
system—somewhere—you knew there was a file calledrpmrc but you couldn’t remember where.
Running the command “locate rpmrc ” will locate all the files on the system with “rpmrc ” in
their names.

The locateprogram doesn’t scan the system every time you make a query, of course. Once a night a
single sweep of the system is performed which creates a database of filenames. It is this database that
is searched.

By default,locatewill list any file or directory which has its search string within it. You can use “/ ”
within the search string to identify directories. The program can generate huge amounts of output and
its output is often piped intogrep for more refined searching.

Figure 1.1. Example: Using the locate command

$ locate rpmrc
/usr/lib/rpm/convertrpmrc.sh
/usr/lib/rpm/rpmrc
/usr/share/gnorpmrc
/usr/share/gnorpmrc.ko

2

Chapter 1. Some useful commands

Using the find command
The locateprogram uses a database to avoid searching the directory hierarchy every time it is called.
A program thatdoeswalk over an entire directory tree (and potentially the whole file system) isfind.
This command runs over a directory tree looking at each file and directory in turn and applies a series
of tests to them. The final “test” is typically either “print the file’s name” or “execute this command
on the file”.

If we run the commandfind . -print then, starting with the current directory (“. ”), find will
run through the entire directory tree and print the name of every file and directory it comes across.

Figure 1.2. Simple uses of find—1

$ find . -print
$ find . -type d -print

A simple test thatfind offers is on the type of the file. If we run the commandfind . -type d
-print thenfind runs through every file and directory under the current working directory and on
each one it runs the test “-type d ” which means “is it a directory?” If the object in question is not
a directory then the processing of that node in the filesystem stops immediately andfind moves on
to the next in its list. It is is a directory thenfind moves on to its next test, which is the pseudo-test
“ -print ” in this case, so it prints the name of the node. What this does it to find and print the names
of all directories at or below the current one.

A similar test checks the name of a node in the file system against a shell-style regular expression.
If we run the commandfind . -name ’[A-Z]*’ -print then any node below the current
working directory will be checked to see if its name starts with a capital letter. If it does then it will
be printed. We can combine tests to find just the directories below the current working directory that
begin with a capital.

Note the use of the single quotes around the regular expression. These stop the shell expanding the
expression into a list of the matching files in the current working directory and allow it to be passed
unexpanded intofind.

Figure 1.3. Simple uses of find—2

find . -name ’[A-Z]*’ -print
find . -type d -name ’[A-Z]*’ -print
find . -type d -name ’*.ps’ -print

In addition to just printing a node’s name it is also possible to getfind to run a command on the
matching node with the-exec option. Its syntax is rather baroque, though. Suppose we want to run
“wc -l ” on every file that ends in “.ps ”. The command we need to run is this:find . -name
’*.ps’ -exec wc -l {} \;

The bizarre hieroglyphs after the-exec demand some explanation. Immediately following the option
is the command to be run, with any options it might have itself. Within these options the token “{} ”

3

Chapter 1. Some useful commands

is expanded into the full filename that has been matched and the “\; ” marks the end of the command.
Note that the space before the “\; ” must be there.

Figure 1.4. Applying a command to every plain file

find . -type f -exec wc -l {} \;

4

Chapter 1. Some useful commands

Using the ps command
This course assumes you already have some basic knowledge of theps command. Theps program
has just a few options that you actually use from day to day. It has many, many other options that you
might use once in your life or in the middle of a particular shell script. The options we will consider
can be split into two classes: process selection options, controlling which processes should be reported
on, and display formatting options which control how the data about the selected processes should be
displayed.

ps: Process selection options

• -e : Every process

• -U user : Processes owned byuser

• -G group : Processes owned bygroup

• -p pid1 , pid2 , pid3 : Processes with IDspid1 ,pid2 or pid3

The quickest way to get lots of data about the processes of interest is to request “full” output with the
-f option. This gives the user, process ID, parent process ID, start time, controlling terminal, CPU
time used and command arguments. It is typically more useful than the “long” option. In theory, the
“full” output gives the user all the information he or she could want and the “long” output gives all the
systemdata about the process.

ps: Simple output formatting

• -f : “Full” output

• -l : “Long” output

• --forest : “Tree” format

• -h : Suppress column headers

5

Chapter 1. Some useful commands

If you need particular bits of information, you should consider using the-o option to specify exactly
whick output columns you want.

Figure 1.5. ps: Fine tuning the output

$ ps -U user -o pid,ppid,cmd
PID PPID CMD

11985 11072 fvwm2
12012 11985 /usr/X11R6/lib/X11/fvwm2/FvwmButtons 8 5 /etc/X11/fvwm2/system.fv

12014 11985 /usr/X11R6/lib/X11/fvwm2/FvwmIconMan 10 5 /etc/X11/fvwm2/system.f

12015 11985 /usr/X11R6/lib/X11/fvwm2/FvwmPager 12 5 /etc/X11/fvwm2/system.fvw

12016 11985 xclock -bg bisque3 -fg black -hd black -hl black -padding 0 -
upda

ps: Useful arguments to-o

• args : the arguments of the command (including the command)

• cmd: the command

• pcpu: percentage of CPU currently used

• time : CPU time used so far

• pmem: percentage of memory currently used

• rss : resident set size

• user : user

• uid : numeric user ID

• group : group

• gid : numeric group ID

• pid : process ID

• ppid : parent process ID

• tty : controlling terminal

• stime : start time

6

Chapter 1. Some useful commands

Figure 1.6. Exercise: ps format options

1.Run the commandps -lf -U yourself .

2.Decide which columns are most useful and/or interesting.

3.Construct aps -o command to show just those columns.

7

Chapter 2. Some shell features

Chapter 2. Some shell features

Table of Contents

Tab completion . 9
A simple history mechanism. 12
An older history mechanism. 13
Command line editing. 14

Red Hat Linux ships withbash(the ‘Bourne Again SHell’) as its default shell. This has a number of
features to make interactive use simpler.

8

Chapter 2. Some shell features

Tab completion

Figure 2.1. Demonstrating bash

1.Launch anxterm.

2.Change directory to${UX}/Lessons/FurtherUnix/bashdemo .

3.Run ls -l .

The first useful feature is called “Tab completion” and saves the user having to type entire file names.
This will become very useful in the package management section where some of the filenames are
very long indeed.

Figure 2.2. Tab completion—1

1.Type: ls -l xy

• Do notpress theReturn key.

• Do not leave any trailing spaces.

2.Press theTab key.

• Observe how the file name is completed for you.

3.PressReturn to issue the instruction.

9

Chapter 2. Some shell features

Figure 2.3. Tab completion—2

1.Type ls -l a
(No Return, no trailing space.)

2.Press theTab key.

• Observe how the file name is completed toabc .

3.Type “1”. (No Return, no trailing space.)

4.Press theTab key again.

• Observe how the file name is fully completed.

Figure 2.4. Tab completion—3

1.Type ls -l p
(No Return, no trailing space.)

2.Press theTab key.

• Observe how the directory name is completed topqr789/ .

3.Type “a”
(No Return, no trailing space.)

4.Press theTab key.

• Observe how the file name is completed.

10

Chapter 2. Some shell features

Figure 2.5. Tab completion—4

1.Type ls -l a
(No Return, no trailing space.)

2.Press theTab key.

• Observe how the file name is completed toabc .

3.Press theTab key quickly.

• Observe how a list of possible completions is offered.

• Note that the partial command line is repeated.

11

Chapter 2. Some shell features

A simple history mechanism
The next useful featurebashoffers is called a history mechanism allowing access to previously typed
commands. There are two such mechanisms built intobash. We will deal with the simpler first.

If you hit the up arrow on your keyboard (not the one that’s part of your numeric keypad) you should
see your previous commands appear at the shell prompt. You can hitReturn after any of them and
they will be executed. You need to be slightly careful because you can change directory somewhere
in your command history and any command you scroll back to will be run in yourcurrentdirectory
rather than in the directory it was previously run in. Sometimes this is what you want; sometimes it
isn’t.

It is also possible to earch for a previously issued command. If you hitCtrl -R the shell prompts you
for a search string with the prompt “(reverse-i-search)‘’ ”. As you type, the shell searches
backwards through its history for the most recently issued command with the string you have typed
in. This is incremental searching; as you type each letter the most recent matching command (being
displayed) may suddenly change. The shell will beep if you type something that causes the search to
fail. This search can be cancelled by hittingCtrl -G .

Figure 2.6. Simple history mechanism

• Hit the up and down arrows a few times.

• Run some commands from the shell history.

• Search backwards for a command and issue it again.

The shell preserves your history between sessions, but it can be confused by multiple sessions running
in parallel. At the start of each sessionbashreads in its initial history from the file.bash_history
in yolur home directory. As it runs it adds to its internal version of the file. At logout, it writes back
its internal history to the file.

12

Chapter 2. Some shell features

An older history mechanism
The second mechanism is based around the “! ” key. The command “! n” will run commandn from
the history list. The command “!- n” will run the commandn lines back in the history list. The
command “!! ” is equivalent to “!-1 ” and repeats the last command.

A more useful “! command” is “! string ”. This repeats the last command issued that started with
“string ”.

Finally, the expression “!$” is interpreted as the final argument on the previous line. This strange
definition turns out to be useful more often than you might expect.

Figure 2.7. Use of the history command

$ history 5
999 ping -c 1 slashdot.org

1000 telnet slashdot.org 80
1001 cd /home/rjd4/CVS_STUFF/courses/linux_sysadmin
1002 imagetool student.ps
1003 history

Figure 2.8. Use of !N

$!-2
imagetool student.ps
$!999
ping -c 1 slashdot.org
PING slashdot.org (209.207.224.41): 56 data bytes
64 bytes from 209.207.224.41: icmp_seq=0 ttl=242 time=158.2 ms

--- slashdot.org ping statistics ---

Figure 2.9. Use of !$

$ ls -l abc123
$ file !$
file abc123
abc123: empty

13

Chapter 2. Some shell features

Command line editing
In addition to the up and down keys accessing the shell’s history, there is also a use for the left and
right arrows. You can move and edit the current command line.

Figure 2.10. Command line editing

1.Type “ls -k x Tab ” (no Return)

2.Press left-arrow to move the cursor after the “-k ”.

3.Delete the “-k ” and type a “-l ”.

4.Hit Return.

5.Press the up arrow to get at that command again.

6.Press the left arrow to move the cursor to after the “-l ”.

7.Delete the “-l ” and hitReturn.

14

Chapter 3. The Filesystem

Chapter 3. The Filesystem

Table of Contents

The file system bestiary. 16
Permissions . 24
Building and adding to the file system. 27

This section will describe how the Unix file system works and how you can often manipulate it to
attach floppies, CDs and Zip discs to your file system. It will also describe a number of more exotic
file types in the Unix file system.

15

Chapter 3. The Filesystem

The file system bestiary
This section will discuss just what sorts of entries exist in the Unix file system and exactly how the
permissions system works. For simplicity’s sake, I shall use the word node to mean any object in the
Unix file system and the word file to refer to a node that is a plain file.

Figure 3.1. Types of node in the Unix file system

• file: a plain file for carrying data

• directory: a container for other nodes

• symbolic link: a reference to another node

• named pipe: a hook for two programs to communicate

• socket: a pretend network connection

• block device: a hook to talk to hardware a block of data at a time

• character device: a hook to talk to hardware a character at a time

Files. Files are just what you think they are: containers for data. That data might be plain text, a
compiled program or an image but that makes no difference to the way the operating system stores
them; they are just files.

Directories. Directories are just what you think they are too. These are known as folders in some
other operating systems and simply provide a hierarchy for all the nodes.

Given just files and directories we are now in a position to consider just how the Unix file system
works under the covers.

Every node in the Unix file system has a number asociated with it called the inode number. The
operating system works in terms of these numbers and the number is the real identifier of the file.
Directories provide lookups from names to inode numbers. (This is a slight lie, we will tell the whole
truth slightly later when we have explained what aphysicalfile system is.)

Figure 3.2. Directories, files and inode numbers

16

Chapter 3. The Filesystem

Note that a node does not know what its own name is! That information is stored only by the directory
that contains it.

If a process is in the directory/tmp/filedemo and tries to reference the (relative) filename
alpha/delta/eta then the operating system first looks upalpha in the current directory (inode
number 12049) to get inode number 16065. It observes that the node with number 16065 is a directory.
Then it looks updelta in that directory to get inode number 20081 which it observes is also a
directory. Finally it looks upeta in that directory to get inode number 20083 which it observes is a
file.

Figure 3.3. Looking at inode numbers

$ cd ${UX}/Lessons/FurtherUnix
$./filedemo
File system demo unpacked in /tmp
$ cd /tmp/filedemo
$ ls -lai
total 5

12049 drwxrwxr-x 5 rjd4 rjd4 1024 Feb 15 10:35 .
2 drwxrwxrwt 7 root root 1024 Feb 15 11:55 ..

16065 drwxrwxr-x 5 rjd4 rjd4 1024 Feb 15 10:36 alpha
26105 drwxrwxr-x 2 rjd4 rjd4 1024 Feb 15 10:35 beta
28113 drwxrwxr-x 2 rjd4 rjd4 1024 Feb 15 10:35 gamma

• Follow your inode numbers down toalpha/delta/eta .

To date, all our inode numbers have been different. We will now change that. There is nothing in
principle to stop two names referring to the same inode number and therefore to the same node in the
filesystem. This is implemented with theln (“link”) command.

17

Chapter 3. The Filesystem

Figure 3.4. Linking to a file

$ cd /tmp/filedemo/alpha/delta
$ ls -li
total 1

20083 -rw-rw-r-- 1 rjd4 rjd4 24 Feb 15 10:46 eta
20082 -rw-rw-r-- 1 rjd4 rjd4 0 Feb 15 10:34 theta

$ ln eta iota
$ ls -li
total 2

20083 -rw-rw-r-- 2 rjd4 rjd4 24 Feb 15 10:46 eta
20083 -rw-rw-r-- 2 rjd4 rjd4 24 Feb 15 10:46 iota
20082 -rw-rw-r-- 1 rjd4 rjd4 0 Feb 15 10:34 theta

• Modify eta and then look in iota.

Note how the fileseta and iota have the same inode number. Any change you make toeta will
be reflected iniota because at a fundamental level they are thesamenode.

There is one wrinkle in practice, however. If two directory entries (one andthree) both correspond
to the same inode number which is a directory, which one should be the parent directory (..) of that
child directory?

Figure 3.5. Ambiguous parent directory

The operating system deals with this possible problem by prohibiting linking to a directory.

If you are familiar with symbolic links please note that these are quite different. The two names
referring to the same inode number areexactly equivalent.

18

Chapter 3. The Filesystem

Figure 3.6. Two links to the same file

$ pwd
/tmp/filedemo/alpha/delta
$ ls -li
total 2

20083 -rw-rw-r-- 2 rjd4 rjd4 54 Feb 16 18:15 eta
20083 -rw-rw-r-- 2 rjd4 rjd4 54 Feb 16 18:15 iota
20082 -rw-rw-r-- 1 rjd4 rjd4 0 Feb 15 10:34 theta

$ cat eta
The cat sat on the mat.
The cow jumped over the moon.
$ cat iota
The cat sat on the mat.
The cow jumped over the moon.
$ rm eta
$ cat iota
The cat sat on the mat.
The cow jumped over the moon.

If you make another link to an existing file and then remove the original filename the new name works
just as well as the old. This is an important difference to symbolic links.

Symbolic links. Symbolic links are a more straightforward form of alias for another file. The data
stored by these nodes is thenameof anothe file, given either as an absolute pathname or as a path
name relative to the location of the symbolic link. When these nodes are opened instead of using the
node’s content the operating system looks up the node refered to by the name held in the symbolic
link.

Symbolic links are quite different from “real” links. However they are also created with theln
command but with the-s option.

Figure 3.7. Creating a symbolic link

$ pwd
/tmp/filedemo/alpha/delta
$ ln -s iota kappa
$ ls -li
total 1

20083 -rw-rw-r-- 1 rjd4 rjd4 54 Feb 16 18:19 iota
20084 lrwxrwxrwx 1 rjd4 rjd4 4 Feb 16 19:59 kappa -

> iota
20082 -rw-rw-r-- 1 rjd4 rjd4 0 Feb 15 10:34 theta

$ cat kappa
The cat sat on the mat.
The cow jumped over the moon.

Unlike real links, if the target of the symbolic link is removed the symbolic links will fail.

19

Chapter 3. The Filesystem

Figure 3.8. Symbolic links are not peers with their targets

$ rm iota
$ cat kappa
cat: kappa: No such file or directory

Because symbolic links are not the equivalents of their targets in the way that real links are wecan
make a symbolic link to a directory.

When you run the commandfind . -name | wc -l you are running two separate processes,
find . -name andwc - at the same time with the output of the first being “piped” to the input
of the second. This is fine if you are launching both processes at the same time but does not help if the
two processes are being launched at different times or even by different users.

Named pipes.A named pipe is a node in the file system that acts in exactly the same way as the pipe
character, ‘| ’, in that command. Output can be sent from one process to that pipe which acts as a
buffer. When that buffer fills up the writing process is paused by the operating system until something
has read some of the buffer. When the reading process has read some of the buffer the writing process
is reawakened to write some more. Should the reading process ever empty the buffer it is paused until
the writer has written some more. When the writer closes its output and the reader has emptied the
buffer then the reader is told it has reached the end of file.

Figure 3.9. Creating a named pipe

$ pwd
/tmp/filedemo/alpha/delta
$ ls -l
total 0
lrwxrwxrwx 1 rjd4 rjd4 4 Feb 16 19:59 kappa -> iota
-rw-rw-r-- 1 rjd4 rjd4 0 Feb 15 10:34 theta
$ mknod lambda p
$ ls -l
total 0
lrwxrwxrwx 1 rjd4 rjd4 4 Feb 16 19:59 kappa -> iota
prw-rw-r-- 1 rjd4 rjd4 0 Feb 17 11:12 lambda
-rw-rw-r-- 1 rjd4 rjd4 0 Feb 15 10:34 theta

Note how named pipes are identified by a leading “p” in the output ofls -l .

20

Chapter 3. The Filesystem

Figure 3.10. Using a named pipe

$ ls -lR ~ > lambda &
[1] 8517
$ jobs
[1]+ Running ls -lR ~ >lambda &
$ wc -l < lambda

2750
[1]+ Done ls -lR ~ >lambda

A pipe can be reused. The sequence of commands above could be repeated.

So why would we want to use a named pipe? Why can’t we just write the output of one program to a
file and then have the second file read it in?

One reason is that if one program outputs large amounts of data and the secons program processes it
down to a smaller quantity then you might want to avoid having a large data file (quite possibly too
large) in between.

Another reason is that you might want the second program to start producing output as soon as
possible. It might not be desirable to wait until the first program has finished before starting the second.
The second can’t just read a partial file because there is no operating system support for distinguishing
reaching end of file because the first program has fiished and reachinf end of file because the first
program has only written this much so far.

Often the “| ” mechanism is sufficient and you should use this anonymous pipe when you can. But,
when you need them, the file system has named pipes too.

Unix domain sockets.Just as a named pipe is a pipe between two processes implemented in the file
system a Unix domain socket is a network connection between two processes implemented in the file
system (which, therefore, does not use the filesystem).

There are no convenient shell programs that use Unix domain sockets (you have to write programs to
use them) so we won’t cover them in detail in this course except to note that they exist and are labelled
with an “s ” in the output ofls -l and are created with themknod command.

Devices.Devices are nodes in the file system that correspond directly to the hardware. Reading and
writing to this node reads from and writes to the hardwaredirectly. Devices come in two flavours:
block devices and character devices. Block devices are for writing large amounts (‘blocks’) of data
(e.g. the disc drives) and character devices are for interactiving with the hardware one character at a
time (e.g. for the keyboard).

Typically only root has access to these devices, but there is often a special case for those devices
corresponding to removable media. For these devices, the operating system switches the ownership to
the user logged in at the console.

21

Chapter 3. The Filesystem

Figure 3.11. Ownership of the floppy disc device

$ ls -l /dev/fd0
brw-rw---- 1 rjd4 floppy 2, 0 Mar 24 2001 /dev/fd0

The leading “b” in the output ofls -l indicates that this is a block device. If would be a “c ” if it
was a character device.

Where the file size would be for a normal file there are two numbers separated by a comma. These
are called the major and minor device numbers and are indexes into a table of hardware devices in the
kernel.

To illustrate the use of talking directly to the floppy drive, we will demonstrate a simple backup
program for making safe copies of files with thetar command. Thetar command’s name is a
contraction of “tape archive” and was originally used to backup to tape devices. We don’t have any
tape devices in this room so we will talk to the floppy device as if it was a tape. This will destroy any
file system that was previously on a floppy; we are going to access the device at the lowest possible
level, below the level at which individual files exist. The floppy drive is just a lump of hardware we
can write up to 1474560 bytes of data to one after the other with no extra structure.

Figure 3.12. Archiving a set of files

$ cd ${UX}/Lessons/FurtherUnix
$ ls data
0 1 2 3 4 5 6 7 8 9
$ du -sk data
3685 data
$ tar -cz -f /dev/fd0 data/

tar options for making an archive

• c : Create an archive

• z : Use compression when creating it

• f /dev/fd0 : Write the archive to this file or device

22

Chapter 3. The Filesystem

Figure 3.13. Unpacking a tar archive

$ cd /tmp
$ tar -xzv -f /dev/fd0
data/
data/0/
data/0/rfc800.txt

...
data/9/rfc898.txt
data/9/rfc899.txt

gzip: stdin: decompression OK, trailing garbage ignored
tar: Child died with signal 13
tar: Error exit delayed from previous errors
$ ls data
0 1 2 3 4 5 6 7 8 9

tar options for unpacking an archive

• x : Extract from an archive

• z : The archive is compressed

• v : Be verbose.

• f /dev/fd0 : Read the archive from this file or device

The warning messages at the end simply mean that the archive didn’t fill the entire disc. The “trailing
garbage” is the remainder of the disc beyond the end of the archive.

As well as unpacking (“extracting”) the archive it is possible to lists its contents by replacing thex
option witht .

It is also possible to unpack or list just parts of an archive by quoting just the parts you want after the
unpacking command. For example, the command

$ tar -xz -f /dev/fd0 data/0 data/1

would unpack just the0 and1 subdirectories ofdata .

There is one last common use of writing directly to a floppy. That is for the purpose of writing
a file system to the disc. Rather than create a DOS file stystem and then unpack an archive
on to it, it is sometimes useful to record the entire disc as raw data and then write it back.
This will duplicate volume labels, file update times etc. There is the image of a file system in
${UX}/Lessons/FurtherUnix/floppy.img which we will use later in this class. (Don’t
worry about themdir command. That command will be explained a bit later.

23

Chapter 3. The Filesystem

Figure 3.14. Writing a disc image onto a floppy

$ mdir a:
init A: non DOS media
Cannot initiailize ’A:’
$ cd ${UX}/Lessons/FurtherUnix
$ cat < floppy.img > /dev/fd0
$ mdir a:

Volume in drive A is Further Use of Unix (abbr=FURTHER USE)
Volume Serial Number is 0E0C-8E4E

Directory for A:/

Y1998P~1 PDF 25973 02-17-2002 13:53 y1998p1q2.pdf
...

Y2000P~3 PDF 31452 02-17-2002 13:53 y2000p1q8.pdf
9 files 307 579 bytes

1 148 416 bytes free

mdir is one of the M-tools, a series of commands that duplicate their DOS equivalent commands on
Unix. The pseudofilenamea: is understood by the M-tools (and not by other utilities) to maean the
floppy drive.

Figure 3.15. Some M-tools

• mcd: change MSDOS directory

• mcopy: copy MSDOS files to/from Unix

• mdel: delete an MSDOS file

• mdir : display an MSDOS directory

• mformat : add an MSDOS filesystem to a low-level formatted floppy
disk

• mlabel: make an MSDOS volume label

• mtype: display contents of an MSDOS file

24

Chapter 3. The Filesystem

Permissions
We will consider file permissions next. Many of you will already understand the details of file and
directory permissions but we want to describe them because we will be using certain facilities which
you may not have seen before.

We’ll start with the easy case: the permissions on a plain file. Every file has a user and a group. It also
has read, write and execute permissions for “user”, “group” and “other”. The rules that ar eapplied to
determine whether a user can do something are very simple, but are applied absolutely and can have
counter-intuitive consequences. Part of the purpose of this course is to upgrade your intuition.

Rules for plain files

1.Are you the same user as the file’s?
If you are, apply the “user” permissionsand do not look at the ‘group’ or ‘other’ permissions.

2.Are you in the file’s group?
If you are, apply the “group” permissionsand do not look at the ‘other’ permissions.

3.Apply the “other” permissions.

Note that this means that even if a file is other-readable but not user-readable, then the relevant user
will not be able to read it.

What the permissions mean on a file is pretty clear: can I read it, can I write to it and can I run it as a
program? Note that a shell script needs to be both executable and readable by the user running it but
a binary executable (e.g. a compiled program) need only be executable.

Figure 3.16. Looking at file permissions

$ cd ${UX}/Lessons/FurtherUnix
$./permdemo
Permissions demo unpacked in /tmp/permdemo

• Which files can you read from?

• Which files can you write to?

What the permissions mean for a directory is slightly different. To understand read and write
permissions, recall that the names of nodes are stored in parent directories and not with nodes
themselves. Also recall that deleting a node involves removing its name from the parent directory.

Rules for directories

1.Read permissionmeans you can read a directoriy, i.e. get the list of names of the directory’s
content.

25

Chapter 3. The Filesystem

2.Write permissionmeans you can alter the content of the directory (e.g. create, delete or rename
entries).

3.Execute permissionmeans something completely different, because it’s meaningless to talk about
executing a directory. This controls whether or not you can make this directory your current
directory (i.e.cd into it).

For directories the read and execute permissions typically go hand-in-hand.

Figure 3.17. Looking at directory permissions

$ ls L
ls: L: Permission denied
$ cat L/README
This is a README file in directory L. The file is world readable.

• Which directories can youls?

• Which directories can you readREADMEfrom?

Internally, the permissions are stored as part of a number whose binary representation has the bits in it
to control whether user’s, group’s or other’s read, write and execute permissions are set. This number
is called the file’s mode. If the mode is written in octal (base 8) then the three sets of permissions
(user’s, group’s and user’s) appear as three numbers between 0 and 7. For this reason it is conventional
to express the mode in octal and when thechmod program is used with a numeric argument to set a
file’s permissions the number should be expressed in octal.

The numbers are calculated using the formula read=4, write=2, execute=1. So, for example,rw-rw-
r-- =(4+2)(4+2)(4)=664.

When a file is first created its initial permissions are controlled by a value known as the umask. This
governs which permissions bits in the file being created arenotset; i.e. it masks out the bits in the final
mode of the file.

26

Chapter 3. The Filesystem

Figure 3.18. Demonstrating umask

$ pwd
/tmp
$ umask
002
$ touch fubar
$ mkdir snafu
$ ls -ld fubar snafu/
-rw-rw-r-- 1 rjd4 rjd4 0 Feb 17 16:12 fubar
drwxrwxr-x 2 rjd4 rjd4 1024 Feb 17 16:13 snafu/
$ umask 022
$ touch laurel
$ mkdir hardy
$ ls -ld laurel hardy
drwxr-xr-x 2 rjd4 rjd4 1024 Feb 17 16:14 hardy
-rw-r--r-- 1 rjd4 rjd4 0 Feb 17 16:14 laurel

27

Chapter 3. The Filesystem

Building and adding to the file system
We will start by considering how the Unix file system is made up. When the system first boots its only
file system is an empty directory called/ . The operating system’s idea of its file system is called the
virtual file system. A very early job in the boot sequence is to add more to the virtual filesystem.

Figure 3.19. Virtual file system before anything is added

Part of the information passed to the operating system is the location on disc of its top-level file system
(the “root” file system). This is a so-called physical file system (because it’s real) and simply lacks
an entry at the top. In this example, we will suppose that the root file system is on the fifth partition
of the first hard drive. This partition is calledhda7 . (hd for hard drive,a for the first of these and7
for the seventh partition.) Note that many of the directories in this physical file system that you might
expect to have contents are in fact empty at the moment. They will have content added later.

Figure 3.20. Part of the root physical file system

The operating system then attaches this physical file system to its virtual file system. This operation
is called mounting and the operating system is said to mounthda7 on / .

Figure 3.21. Virtual file system with the root file system mounted

At this stage the/boot , /tmp and /proc directories are empty. These will be given content by
further mounting. To learn what further mounting is required the operating system reads the file
/etc/fstab . We don’t need to understand the whole of this file but a few salient details will make
life easier for us.

28

Chapter 3. The Filesystem

Figure 3.22. /etc/fstab

/dev/hda7 / ext2 defaults 1 1
/dev/hda2 /boot ext2 defaults 1 2
/dev/hda6 /tmp ext2 noauto,defaults 0 0
/dev/hda5 swap swap defaults 0 0
none /proc proc defaults 0 0
/dev/fd0 /mnt/floppy auto noauto,owner 0 0
/dev/cdrom /mnt/cdrom iso9660 noauto,owner,ro 0 0

The first,hda7 line is for consistency. The operating system already knows where to get its top-level
file system from to mount on/ . The next two lines,hda2 andhda6 tell it to mount two more physical
file systems into the virtual file system.

Figure 3.23. Part of the /boot physical file system

The operating system mounts this file system on the (empty)/boot directory contained in the root
file system.

Figure 3.24. Virtual file system with the /boot file system mounted

/tmp is mounted fromhda6 in a similar way but is typically empty.

Now we have to admit to an untruth earlier in the course. Earlier we said that a node in the file system
was uniquely identified by its inode number. Well, that’s true within aphysicalfile system but not
over the whole virtual file system. Over the virtual file system any node is uniquely identified by the
pair of the physical file system and the inode number on that file system. And that’s the truth. Honest.

Because theln command simply sets entries in directories, it is impossible to set hard links across
different physical file systems. This is another plus for symbolic links which can span physical file
systems.

hda5 is used for system virtual memory and has no physical file system so is not mounted into
the virtual file system. It’s place in the/etc/fstab file is just a convenient place to stash the
information.

29

Chapter 3. The Filesystem

The/proc node in the virtual filesystem, on the other hand is mounted into the virtual file system but
has no corresponding physical file system. There’s no corresponding bit of disc. Instead it is used as
a window into the kernel’s state at any time as a way to look at processes. We shall look at this briefly
later.

Finally, the last two lines refer to devices./dev/cdrom and/dev/fd0 correspond to the CD-ROM
and floppy drives respectively. Theowner option along the line means that the person logged in at
the system can mount (and unmount) these devices on/mnt/cdrom and/mnt/fd0 respectively.
Those systems with Zip discs should have a line for them too.

There are a number of ways of accessing the floppy drive; mounting is just one of them.

Figure 3.25. Before mounting a DOS floppy

• Check ownership of/dev/floppy .

• Check/mnt/floppy is empty.

Figure 3.26. Mounting a DOS floppy

• Insert and mount the floppy.

• Look in /mnt/floppy again.

• Can you unmount/mnt/floppy when it is your current directory?

• Unmount and eject the floppy.

Mounting a DOS floppy: details

1.Check ownership of/dev/floppy .

$ ls -l /dev/floppy

2.Check/mnt/floppy is empty.

$ ls -l /mnt/floppy

3. Insert floppy.

30

Chapter 3. The Filesystem

4.Mount floppy.

$ mount /mnt/floppy

5.Look in /mnt/floppy again.

$ ls -l /mnt/floppy

6.Can you unmount/mnt/floppy when it is your current directory?

$ cd /mnt/floppy

$ umount /mnt/floppy

umount: /mnt/floppy: device is busy

7.
$ cd
$ umount /mnt/floppy
$

8.Note that the directory is empty again.

$ ls -l /mnt/floppy

9.Eject floppy.

What a rigmarole! While this is typically useful for large removable media like CD-ROMS and,
perhaps, Zip discs it isn’t particularly sensible for floppy discs. This is why the M-tools exist.

We still have not properly addressed the/proc line in /etc/fstab file. If you ls /proc you will
see a number of directories, some with purely numerical names and others with words for names.

Each of the named directories carries information about the operating system. For example
/proc/cpuinfo will tell you details of the processor running the operating system.

More interestingly for us, the numbered directories give information about the process with that
number.

31

Chapter 3. The Filesystem

Figure 3.27. Investigating /proc

$ echo $$
1055
$ ls -l /proc/1055
total 0

...
lrwxrwxrwx 1 rjd4 rjd4 0 Feb 17 17:29 cwd -> /tmp
lrwxrwxrwx 1 rjd4 rjd4 0 Feb 17 17:29 exe -> /bin/bash

...
$ cd
$ ls -l /proc/1055
total 0

...
lrwxrwxrwx 1 rjd4 rjd4 0 Feb 17 17:29 cwd -
> /servers/rjd4/PWF-HOME-KZ/OR/RE-RJ/RJD4
lrwxrwxrwx 1 rjd4 rjd4 0 Feb 17 17:29 exe -> /bin/bash

...

There’s one last sort of file system we should look at: the network file system. A network file system
is a means to access remote files as apparently local. Instead of the kernel converting operations on the
virtual filesystem into operations on the appropriate physical file system it converts them into network
instructions. These are converted by a server at the remote end that then converts them into operations
on a physical file system. Linux supports a variety of different network file systems including NFS
(Network File System—the original), NCPFS (Novell file systems as used on PWF Linux) and SMB
(as used with Windows).

32

Chapter 4. The Secure Shell program

Chapter 4. The Secure Shell program

Table of Contents

Basic use . 34
Transferring files with scp. 37
Using sftp . 38
Doing without the password. 40

If you pass your userid and password over the network they will get snooped eventually. That is a sad,
but accuate, reflection of the current computing world.

To remove this problem, and a few others too, we provide thesshprogram. This chapter will discuss
sshand its associated commands. To really enjoy this section you need to have an account on another
box running a reasonably recent SSH service. (It needs to support version 2 of the protocol.)

• slogin: ‘Secure Login’
This program is used to log in to remote systems.

• ssh: ‘Secure Shell’
This program is used to run a (typically single) command on a remote system. It also gives its
name to the suite of programs: "thesshprograms".

• scp: ‘Secure Copy’
This program is used to transfer files to and from remote systems.

• sftp: ‘Secure File Transfer’
This program is used to transfer files to and from remote systems and is more similar to the FTP
program. It is not always possible to usesftp depending on the facilities provided by the remote
system.

33

Chapter 4. The Secure Shell program

Basic use
The examples shown here are all run the from the command line. We will now show some examples of
slogin’s use. Note that the first time you ever log in to a system you may be asked one extra question
by slogin.

1.We start by launchingslogin followed by the name of the remote system we want to connect to.

$ slogin hydra.csi.cam.ac.uk

The authenticity of host ’hydra.csi.cam.ac.uk (131.111.8.86)’ can’t be es-

tablished.

RSA1 key fingerprint is d8:7e:70:68:4c:b2:6e:92:ed:50:16:1c:2d:1c:19:3b.

Are you sure you want to continue connecting (yes/no)?

This is the stage you will only see once for each remote system (hydra.csi.cam.ac.uk in this
example). Part of the security of the connection is provided by the workstation being sure it is
talking to the right system at the far end and not some other system pretending to be it. This is
done by a piece of cryptography beyond the scope of this documentation. The upshot of it is that
there must be a record of the remote system at this end for checking against. If you have never
connected to hydra.csi.cam.ac.uk before you won’t have this record. So the first time you connect
you must take it on trust. You are given some “fingerprint” information to help you ensure it is
thwe right system, but there are no central records of these fingerprints to check against so they
are of limited use.

For some major servers in the University the records have already been collated and put in a
central file on the workstation so for important systems like Hermes you won’t be asked for this
leap of faith.

2. In this example we will accept the validity of the connection. If we had declined then the
connection would have been broken.

The authenticity of host ’hydra.csi.cam.ac.uk (131.111.8.86)’ can’t be es-

tablished.

RSA1 key fingerprint is d8:7e:70:68:4c:b2:6e:92:ed:50:16:1c:2d:1c:19:3b.

Are you sure you want to continue connecting (yes/no)? yes

3.Next, having accepted a connection to the remote system, you must identify yourself to the remote
system for it to accept you. While the password is shown in the example note thatyour password
is not echoed to the screen in practice.

rjd4@hydra.csi.cam.ac.uk’s password: pi314e27

All data being passed overthe network byslogin is encrypted. Your userid and password cannot
be recorded by a malicious third party listening in on network traffic.

34

Chapter 4. The Secure Shell program

4.You are now logged in to the remote system.

Last login: Wed Oct 3 12:10:57 2001 from gelatinous-cube.

Sun Microsystems Inc. SunOS 5.8 Generic February 2000

No mail.

bash-2.03$

Any subsequent logins to the same remote host should not trigger the same host authenticity warning.

$ slogin hydra.csi.cam.ac.uk
rjd4@hydra.csi.cam.ac.uk’s password: pi314e27
Last login: Wed Oct 3 15:56:07 2001 from gelatinous-cube.
Sun Microsystems Inc. SunOS 5.8 Generic February 2000
No mail.
bash-2.03$

If you have a different userid on the remote system than it can be quoted on the command line by
preceding the hostname with the userid and an at-sign,@.

$ slogin bob@balrog.csi.cam.ac.uk
bob@balrog.csi.cam.ac.uk’s password:

Under certain unusual circumstances you will be presented with a warning connecting to a system that
either you have visited before or which we have stored the record for ourselves.

$ slogin hydra.csi.cam.ac.uk
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA1 host key has just been changed.
The fingerprint for the RSA1 key sent by the remote host is
d8:7e:70:68:4c:b2:6e:92:ed:50:16:1c:2d:1c:19:3b.
Please contact your system administrator.
Add correct host key in /servers/rjd4/PWF-HOME-KZ/OR/RE-
RJ/RJD4/.ssh/known_hosts to get rid of this message.
Offending key in /servers/rjd4/PWF-HOME-KZ/OR/RE-
RJ/RJD4/.ssh/known_hosts:18
RSA1 host key for hydra.csi.cam.ac.uk has changed and you have re-
quested strict checking.

This means that the record at the workstation end does not tie up with the data presented by the far
end. What this really means in practice is one of three things.

By far the most common cause of this is that the remote system has been reinstalled and the records
at its end were not preserved over the reinstallation. You now have an out of date record in your PWF
account that you need to remove.

35

Chapter 4. The Secure Shell program

The other two cases involve security attacks where the remote system either is being imitated by an
imposter this time or was being imitated by an imposter the first time you connected to it. This ismuch
rarer but if the connection is being made to a UCS system then this really shouldn’t happen and if you
see this message please contact the Help Desk as it is likely to be a security incident.

If you need to remove an out of date record from your PWF account because the remote system
has changed its end then follow this procedure for the two files~/.ssh/known_hosts and
~/.ssh/known_hosts2 . It is quite possible that the machine you need to remove only appears in
one of these files or even that only one of these files will exist.

1.Open the file with a plain text editor (vi, emacs, pico -w, nota word processor).

2.Search for the line starting with the machine’s name.
In known_hosts :

hydra.csi.cam.ac.uk,131.111.8.86 1024 33 135453528244700266384215638898398664

07351082137527268751581558499173381992831037340538811476607388550804323131890

66281594113915293223890056816366822043415686100278795830858815566008436330196

38824406039606812629274024425338726739371608288960553566748266694381643201634

688777631521927935330842276417

In known_hosts2 :

hydra.csi.cam.ac.uk,131.111.8.86 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAueQKe9yq

gnS+27Vmlpba5l7pwCTkehO1tgDl1K6F4Ix/GLD8L4BBT10eJJkE4p7EhmoUnuskDYmh0C1P+i6sv

hQzbnlB2WbHCGU4eR/uWiDAyhrV+0HMEWr3ozV4vjUGZprZTVV52G4aP5mnx71zGJ/qrwdpZmUqSH

DM=

3.Delete the line.

4.Repeat the last two steps until there are no matching lines. (It is possible for a machine to appear
more than once under certain circumstances.)

5.Save the file back and quit the editor.

36

Chapter 4. The Secure Shell program

Transferring files with scp
There are two tools for transferring files to or from a remote system. One,scp is simple and best used
for just a few files if you know in advance where they are going to and coming from. The other,sftp,
is only useful if the far end runs version 2 of the protocol and has support for the service enabled. We
will considerscpfirst.

We will demonstrate it by transferring all the files in/tmp/data to another machine. In this case I
will use my office workstation, hydra.csi.cam.ac.uk, to transfer the files too.

$ scp -r data hydra.csi.cam.ac.uk:/tmp
rjd4@hydra.csi.cam.ac.uk’s password: pi314e27

rfc800.txt 100% ************** 17764 00:00
rfc801.txt 100% ************** 40824 00:00

...
rfc898.txt 100% ************** 42112 00:00
rfc899.txt 100% ************** 39966 00:00

37

Chapter 4. The Secure Shell program

Using sftp
Thesftp command acts like a primitiveftp program. The differences are thatsftp lacks some offtp ’s
more sophisitcated (and less often used) options and posesses a secure communication link thatftp
lacks.

To connect to a remote system issue the command followed by the remote system’s name.

$ sftp hydra.csi.cam.ac.uk
Connecting to hydra.csi.cam.ac.uk...
rjd4@hydra.csi.cam.ac.uk’s password: pi314e27
sftp>

All the options available from withinsftp are listed in response to thehelp or ? command.

sftp> help
Available commands:
cd path Change remote directory to ’path’
lcd path Change local directory to ’path’
chgrp grp path Change group of file ’path’ to ’grp’
chmod mode path Change permissions of file ’path’ to ’mode’
chown own path Change owner of file ’path’ to ’own’
help Display this help text
get remote-path [local-path] Download file
lls [ls-options [path]] Display local directory listing
ln oldpath newpath Symlink remote file
lmkdir path Create local directory
lpwd Print local working directory
ls [path] Display remote directory listing
lumask umask Set local umask to ’umask’
mkdir path Create remote directory
put local-path [remote-path] Upload file
pwd Display remote working directory
exit Quit sftp
quit Quit sftp
rename oldpath newpath Rename remote file
rmdir path Remove remote directory
rm path Delete remote file
symlink oldpath newpath Symlink remote file
version Show SFTP version
!command Execute ’command’ in local shell
! Escape to local shell
? Synonym for help
sftp>

As can be seen, a small set of the usual commands are available, but which operate on the remote
system rather than the local one:cd, chgrp, chmod, chown, ls, mkdir , pwd, exit, rm andrmdir .

Some commands are subtly different. Theln command always creates a symbolic link rather than
optionally a hard link. To avoid confusion it is probably better to stick to using thesymlink synonym.

Some of these have local equivalents named by preceding the remote version with anl: lcd, lls,
lmkdir andlpwd. However, with the exception oflcd, these are purely convenience function names.

38

Chapter 4. The Secure Shell program

An arbitrary local commnad can be run by preceding it with a!. This starts a subshell which runs the
command and then exits, returning control to thesftp program. So the command

sftp> lls

is exactly equivalent to

sftp> !ls

and it is possible to issue the command

sftp> !date
Mon Oct 8 18:50:48 BST 2001

where there is noldate command withinsftp. Furthermore it is possible to build up complex command
lines after the! just as one can at the usual shell prompt:

sftp> !ls | sort

The one command that you must use with thel version islcd. The command!cd fubar would create
a subshell and that subshell would change directory tofubar and then exit. The parent process,sftp
would not have moved. Therefore special measures are required and these are provided bylcd.

However, the most commonly usedsftp commands arels to inspect the remote end,get to fetch files
from it andput to send files to it. This is best demonstrated by example.

sftp> pwd
Remote working directory: /home/rjd4
sftp> cd Java
sftp> get *.java
Fetching /home/rjd4/Java/Hello.java to Hello.java

39

Chapter 4. The Secure Shell program

Doing without the password
So far we have had to quote our password every time we have made a connection. It is possible to set
up SSH so that your account on one system will trust another.

In the examples given below we will assume that the remote system is using a modern (by which I
mean version 2) SSH implementation. Hassle your system administrator if you ar estill running with
version 1 only. SSHv2 supports two different cryptographic protocols, RSA and DSA. We will set up
our end to use either.

The following procedure needs to be done only once per remote system.

1. We start by creating the RSA keys. If you have files~/.ssh/id_rsa and
~/.ssh/id_rsa.pub then you can skip this stage. (You should have neither or both.
Having one or the other is a sign that something has gone wrong.)
We will accept the default location for the keys and not request a passphrase (another level of
encryption) as this will get in the way of passwordless access).

$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/servers/rjd4/PWF-HOME-KZ/OR/RE-
RJ/RJD4/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /servers/rjd4/PWF-HOME-KZ/OR/RE-
RJ/RJD4/.ssh/id_rsa.
Your public key has been saved in /servers/rjd4/PWF-HOME-KZ/OR/RE-
RJ/RJD4/.ssh/id_rsa.pub.
The key fingerprint is:
41:9c:51:f9:2a:ec:af:3b:e4:f8:8f:a9:dc:cb:a4:87 rjd4@basilisk.csi.cam.ac.uk

2. We repeat the process to create the files for the DSA mechanism. This time,ssh-keygentakes
the-t dsaoption.

$ ssh-keygen -t dsa

Generating public/private dsa key pair.

Enter file in which to save the key (/servers/rjd4/PWF-HOME-KZ/OR/RE-

RJ/RJD4/.ssh/id_dsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /servers/rjd4/PWF-HOME-KZ/OR/RE-

RJ/RJD4/.ssh/id_dsa.

Your public key has been saved in /servers/rjd4/PWF-HOME-KZ/OR/RE-

RJ/RJD4/.ssh/id_dsa.pub.

The key fingerprint is:

2a:9f:34:59:3a:ce:e2:7a:10:c3:5a:05:7b:73:36:75 rjd4@basilisk.csi.cam.ac.uk

40

Chapter 4. The Secure Shell program

3. Next we will transfer the two public parts of the keys to the remote host, hydra.csi.cam.ac.uk in
this case. We must be careful not to overwrite any equivalent files on the remote host.

$ scp ~/.ssh/id_rsa.pub hydra.csi.cam.ac.uk:pwfkey_rsa.pub

rjd4@hydra.csi.cam.ac.uk’s password: pi314e27

id_rsa.pub 100% ************** 244 00:00

$ scp ~/.ssh/id_dsa.pub hydra.csi.cam.ac.uk:pwfkey_dsa.pub

rjd4@hydra.csi.cam.ac.uk’s password: pi314e27

id_dsa.pub 100% ************** 624 00:00

4. Now we log in to the remote system. This should be the last time you ever have to quote your
remote password from this system.

$ slogin hydra.csi.cam.ac.uk

rjd4@hydra.csi.cam.ac.uk’s password: pi314e27

Last login: Tue Sep 11 11:29:32 2001 from basilisk.csi.cam.ac.uk

hydra:rjd4$

5. On the remote box we must append the two files we transferred to~/.ssh/authorized_keys2 .
If the .ssh directory does not exist you must create it first and make it accessible only by you.
You also need to make sure that only you can update the~/.ssh/authorized_keys2 file.

hydra:rjd4$ mkdir ~/.ssh

hydra:rjd4$ chmod og-rwx ~/.ssh

hydra:rjd4$ cat pwfkey_rsa.pub pwfkey_dsa.pub >> ~/.ssh/authorized_keys2

hydra:rjd4$ chmod go-w ~/.ssh/authorized_keys2

You can now delete the files you copied over. They are no longer needed now that they have been
appended to the important file.

6. Logout of the remote system.

7. Now login to it again. You should not be prompted for a password.

$ slogin hydra.csi.cam.ac.uk

Last login: Tue Sep 11 12:13:40 2001 from basilisk.csi.cam.ac.uk

hydra:rjd4$

41

	Further Use of Unix
	Chapter 1. Some useful commands
	Using the locate command
	Using the find command
	Using the ps command

	Chapter 2. Some shell features
	Tab completion
	A simple history mechanism
	An older history mechanism
	Command line editing

	Chapter 3. The Filesystem
	The file system bestiary
	Permissions
	Building and adding to the file system

	Chapter 4. The Secure Shell program
	Basic use
	Transferring files with scp
	Using sftp
	Doing without the password

